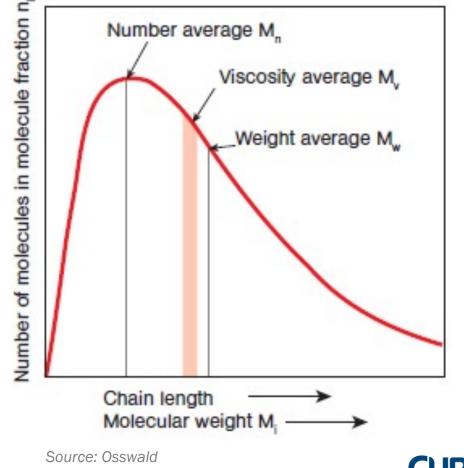

Understanding High Performance Thermoplastics: 10+ Materials for Demanding Applications

Webinar Presented by Curbell Plastics

- Briefly discuss the advantages and limitations of the datasheet
- Introduce select high performance thermoplastics and applications
 - Fluoropolymers (PTFE, PVDF, PCTFE, etc.)
 - PSU
 - PPSU
 - Ultem[®] PEI
 - PPS
 - PEEK (and other PAEK)
 - Torlon[®] PAI
 - PBI
 - DuPont[™] Vespel[®] PI
- Open the floor to questions

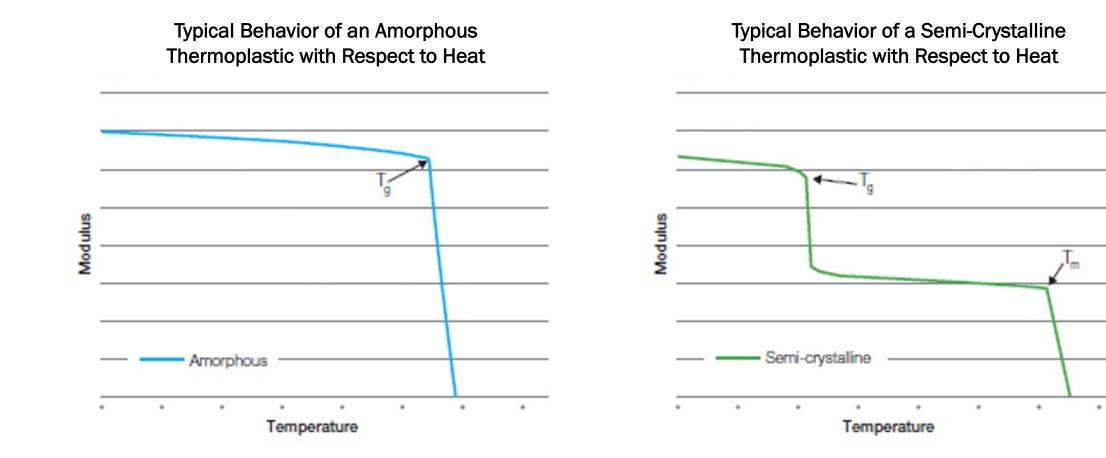
*Materials should be considered for applications up to approximate maximum temperature. Selecting a plastic material for use in a high temperature environment requires careful review of material properties data. This chart is for comparison purposes only.


Advantages and Limitations of the Datasheet

Molecular Weight: Polymers are "Polydisperse"

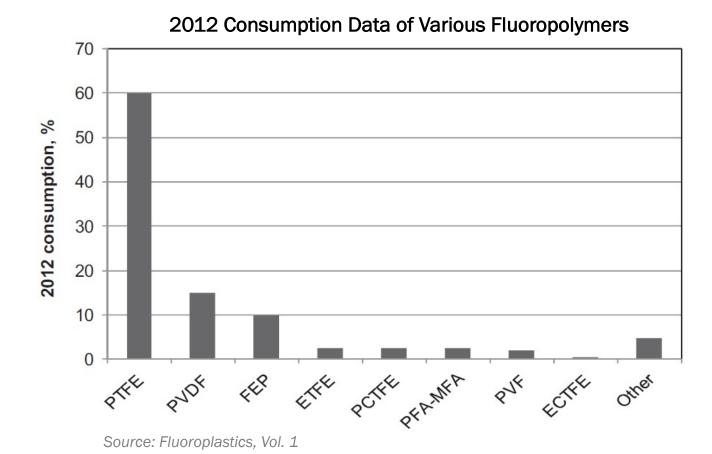
Typical Thermoplastic Molecular Weight Distribution

The Datasheet


- Enables quick comparisons between materials
- Not for specification purposes
- Most values do not take into account changes with temperature, strain rate, and/or time
- Often generated from injection molded specimens

	ASTM Test method	Unit	Value
Physical Properties			
Specific Gravity	D792	g/cm ³	1.32
Water Absorption 24 hours	D570	%	0.1
Water Absorption Saturation	D570	%	0.5
Dissipation Factor	D150	1 MHz	0.003
Mechanical Properties			
Hardness	D785	Shore D	D85
Rockwell Hardness	D785	М	M105
Rockwell Hardness	D785	R	R126
Tensile Strength at yield 73 °F	D638	psi	16,000
Tensile Modulus	D638	psi	500,000
Elongation at Break	D638	%	20
Flexural Strength	D790	psi	25,000
Flexural Modulus	D790	psi	600,000
Compressive Strength	D695	psi	18,000
Shear Strength	D732	psi	7,700
Izod Impact, Notched	D256	ft-lb/in	1.2
Coefficient of Friction, Dynamic		· ·	0.4
Thermal properties			
CTE, linear	D696	in/in/°F	2.6x10-5
Melting Point	D3418	°F	630
Continuous Use		°F	480
Thermal Conductivity		in/hr/ft2/F°	1.73
Deflection Temperature at 1.8Mpa (66psi)	D648	°F	360
Deflection Temperature at 1.8Mpa (264psi)	D648	°F	320
Flammability, UL94	-	1/8 inch	V-0
Electrical properties			
Dielectric constant	D150	-	3.3
Surface resistivity	D257	Ohm/cm	10 ¹⁵
Dielectric strength	D149	V/mil	480
Compliance Properties			
FDA	-		Yes

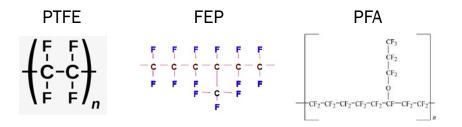
Source: Röchling

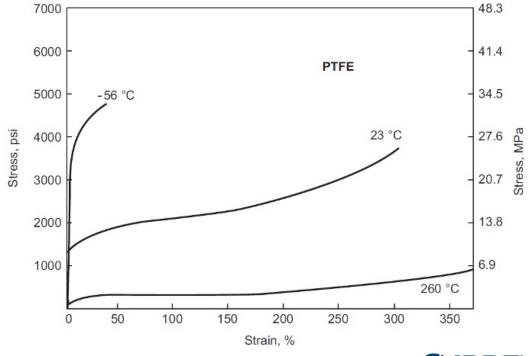


High Performance Thermoplastics

Fluoropolymers

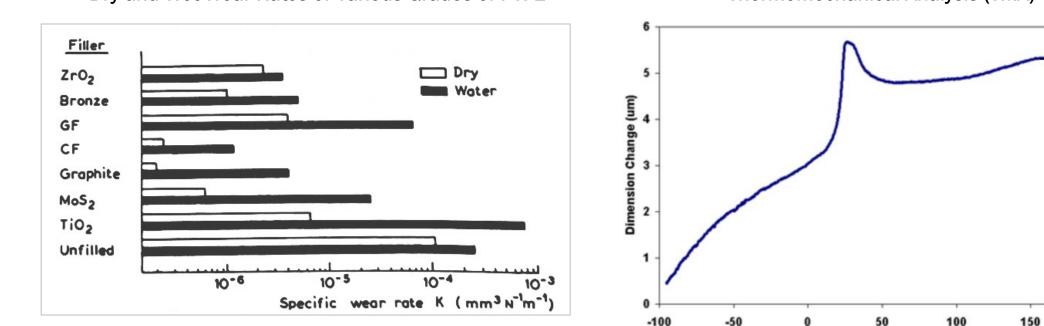
• Known for chemical resistance (especially PTFE)




PTFE, FEP, and PFA

• FEP and PFA are melt processible

	PTFE
Specific Gravity	2.16
Tensile Strength	3,000 psi
Elongation at Break	300%
Flex Modulus	70,000 psi
IZOD Impact (Notched)	3.5 ft-lb/in
Coefficient of Thermal Expansion	7.5 x 10 ⁻⁵ in/in/°F
Coefficient of Friction	0.05
Limiting Oxygen Index	95%



Tensile Stress/Strain of PTFE at Various Temperatures

Wear and Thermal Expansion of PTFE

Dry and Wet Wear Rates of Various Grades of PTFE

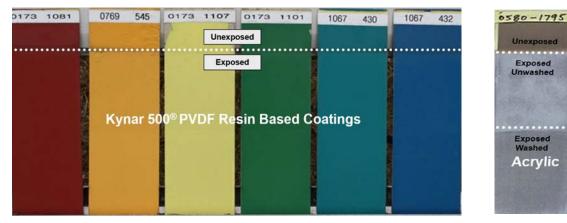
Thermomechanical Analysis (TMA) of PTFE

Temperature (C)

Source: Anderson Materials

Source: Tanaka

250


200

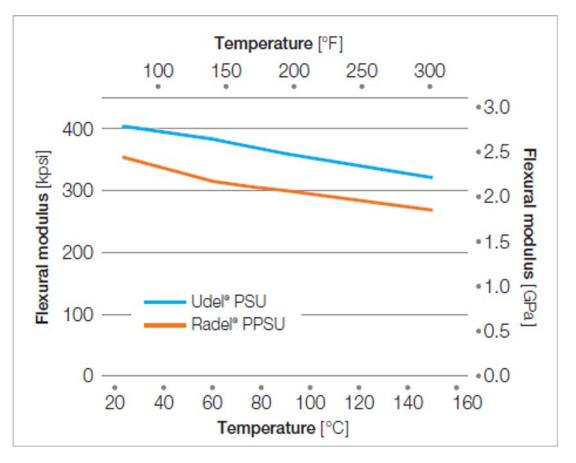
PVDF, ETFE, ECTFE, and PCTFE

	F H C C C F H <i>n</i>		$ \begin{bmatrix} H & H & F & F \\ - & - & - & - & - \\ C & - & C & - & C \\ - & - & - & - & - \\ - & - & - & - & -$	$ \begin{pmatrix} F & CI & H & H \\ & & & \\ C & C & C & C & C \\ & & & \\ F & F & H & H \end{pmatrix}_{n} $	$ \begin{array}{c c} F & CI \\ $
	PVDF	PVDF (Copolymer)	ETFE	ECTFE	PCTFE
Specific Gravity	1.78	1.78	1.70	1.68	2.13
Tensile Strength	7,000 psi	5,000 psi	6,000 psi	7,000 psi	5,000 psi
Elongation at Break	50%	300%	300%	250%	150%
Flex Modulus	300,000 psi	170,000 psi	170,000 psi	240,000 psi	200,000 psi
IZOD Impact (Notched)	3.0 ft-lb/in	6.0 ft-lb/in	No Break	No Break	5.0 ft-lb/in
Coefficient of Thermal Expansion	7.0 x 10 ⁻⁵ in/in/°F	8.5 x 10 ⁻⁵ in/in/°F	7.4 x 10 ⁻⁵ in/in/°F	5.6 x 10 ⁻⁵ in/in/°F	7.0 x 10 ⁻⁵ in/in/°F
Limiting Oxygen Index	44%	43%	30%	52%	95%

PVDF Weatherability

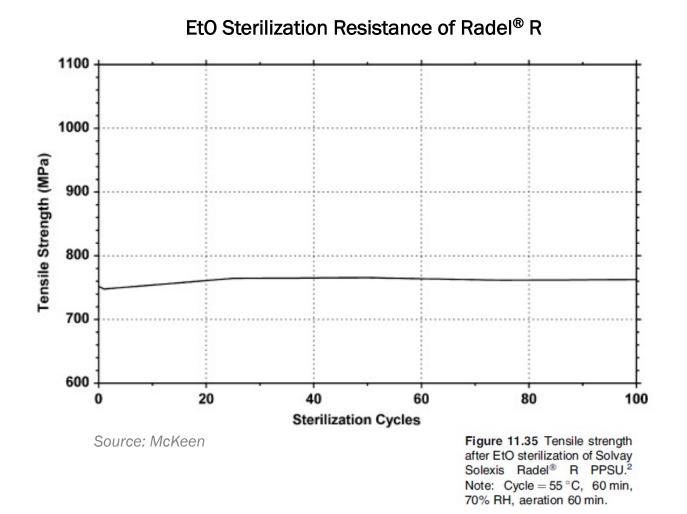
Source: Arkema

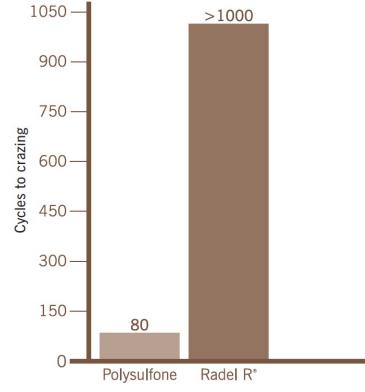
Tensile Strength Retention After Outdoor Weathering in Miami, Florida 140 ---- Tensile strength retained -A- Elongation retained 120 Property retention (%) 2010 - 200 80 60 40 20 0 1.5 2.5 3.0 3.5 4.0 4.5 0.5 1.0 2.0 0.0 5.0 Exposure time (years)


Source: McKeen

PSU and PPSU (Radel[®] R)

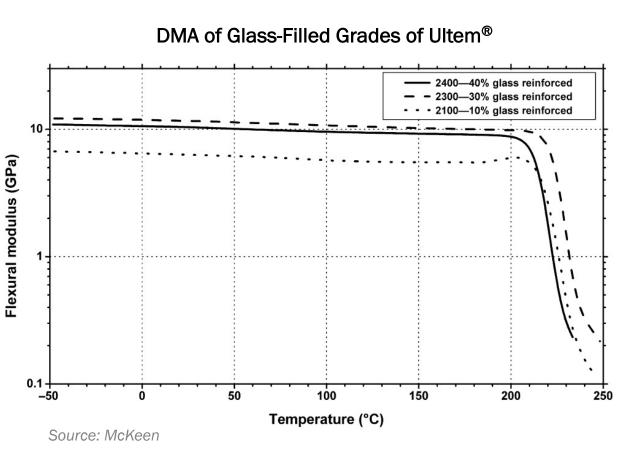
	PSU	PPSU
Specific Gravity	1.24	1.29
Tensile Strength	10,000 psi	11,000 psi
Elongation at Break	50%	60%
Flex Modulus	400,000 psi	350,000 psi
IZOD Impact (Notched)	1.3 ft-lb/in	13.0 ft-lb/in
Coefficient of Thermal Expansion	3.1 x 10 ⁻⁵ in/in/°F	3.1 x 10 ⁻⁵ in/in/°F
Glass Transition Temperature	365°F	428°F


Flexural Modulus vs. Temperature of Neat Resins


Source: Solvay

PPSU (Radel[®] R) Sterilizability

Steam Autoclave Resistance of Radel[®] R Compared with Polysulfone


Autoclave: 27 psig steam, 270°F steam contains 50ppm Morpholine Test conditions: Bar - 5 x 0.5 x 0.125 in, Flexural stress - 1000psi

• Amorphous thermoplastic with a Tg ~422°F/217°C

	Ultem [®] 1000 (Unfilled)	Ultem [®] 2300 (30% Glass Filled)	
Specific Gravity	1.28	1.51	
Tensile Stress (Yield)	16,000 psi	24,000 psi	
Elongation (Break)	60%	3%	
Flex Modulus	500,000 psi	1,300,000 psi	
IZOD Impact (Notched)	1 ft-lb/in	1.6 ft-lb/in	
CTE (Flow)	3.1 x 10 ⁻⁵ in/in/°F	1.1 x 10 ⁻⁵ in/in/°F	
CTE (Xflow)	3.0 x 10 ⁻⁵ in/in/°F	2.7 x 10 ⁻⁵ in/in/°F	
Dielectric Strength	830 V/mil	630 V/mil	
UL94 5VA	≥ 0.118"	≥ 0.047"	

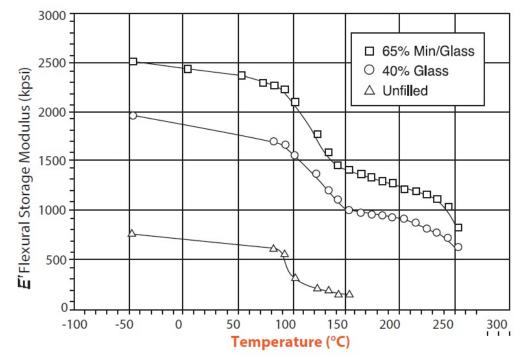
CURBELL

Sulfone and Ultem[®] PEI Application Examples

PSU Food Warming Trays

Medical Trays

PPSU (Radel® R) Medical Instrument Handle



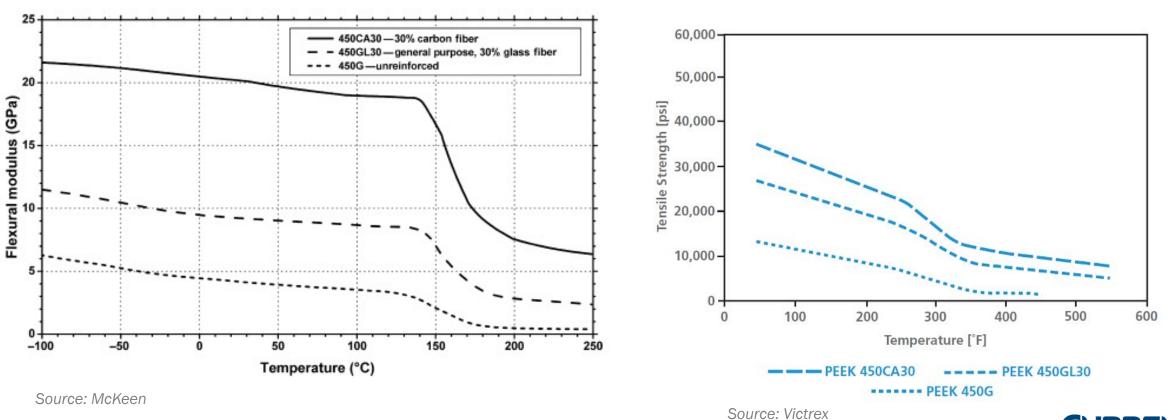
Ultem[®] Test Socket

• Semi-crystalline thermoplastic with Tg ~194°F/90°C and Tm ~ 540°F/282°C

DMA of Unfilled and Filled Grades of PPS

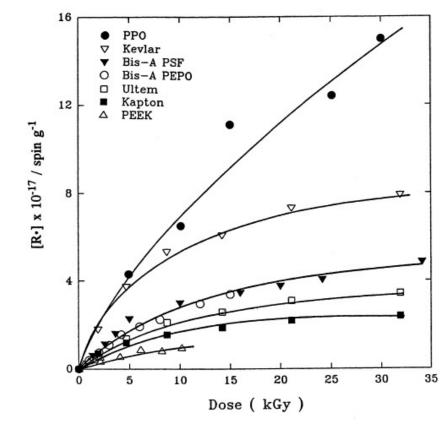
Anisotropic Effects on Mechanical Properties at 23°C

	Dt/Df (%)			
Material	Flexural Strength	Flexural Modulus	Tensile Strength	Tensile Elongation
40% Glass- Reinforced Fortron® PPS	50	60	55	65


Source: Celanese

Source: Celanese

• Semi-crystalline thermoplastic with Tg ~ 289°F/143°C and Tm ~ 650°F/343°C

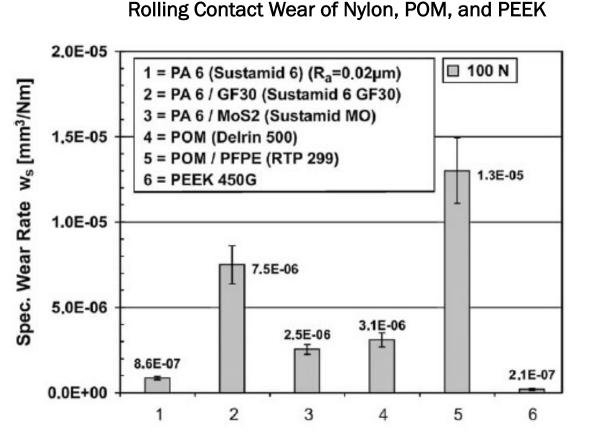


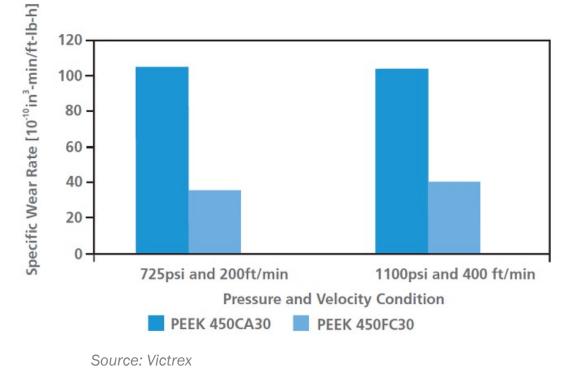
DMA Curves for Standard PEEK Grades

Tensile Strength vs. Temperature of Various PEEK Materials

PEEK Steam and Radiation Resistance

Radiation Resistance of Various Plastics


Source: Heiland


Property	Standard Control Time/hours						
			75	350	1000	2000	2500
Tensile Strength/MPa (psi) VICTREX 450G	ISO 527	103 (14,900	111 (16,100)	109 (15,800)	109 (15,800)	109 (15,800)	109 (15,800)
Flexural Strength/MPa (psi) VICTREX 450G	ISO 178	165 (23,900)	188 (27,300)	192 (27,800)	185 (26,800)	196 (28,400)	181 (26,300)
Flexural Modulus/GPa (psi) VICTREX 450G	ISO 178	4.1 (590,000)	4.4 (640,000)	4.4 (640,000)	4.2 (610,000)	4.4 (640,000)	4.0 (580,000)

Source: Victrex

PEEK Wear Resistance

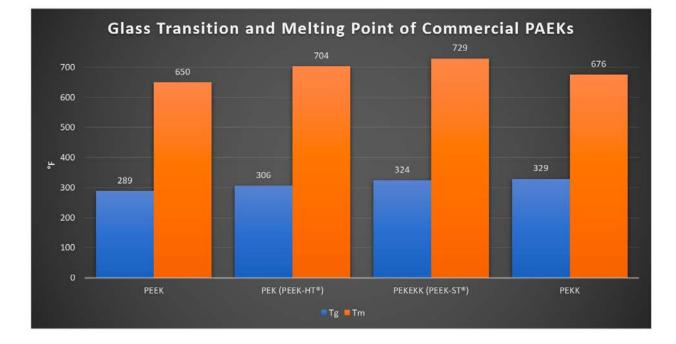
Specific Wear Rate of Various Victrex Materials Tested Using the Block-On-Ring Method

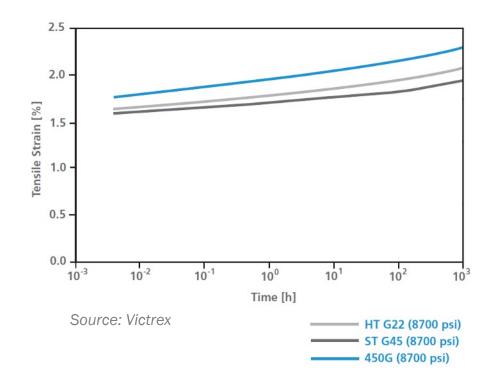
Source: Harrass

PEEK and PPS Application Examples

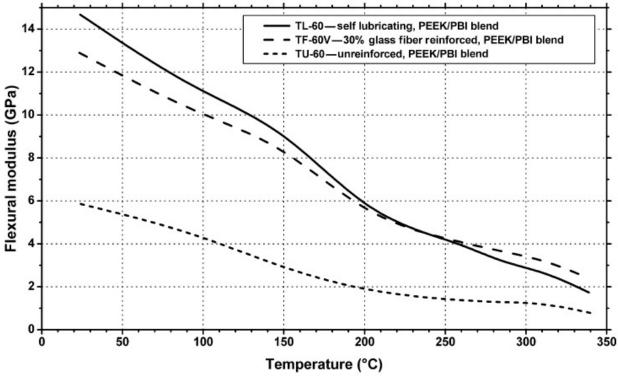
PEEK Split Ring

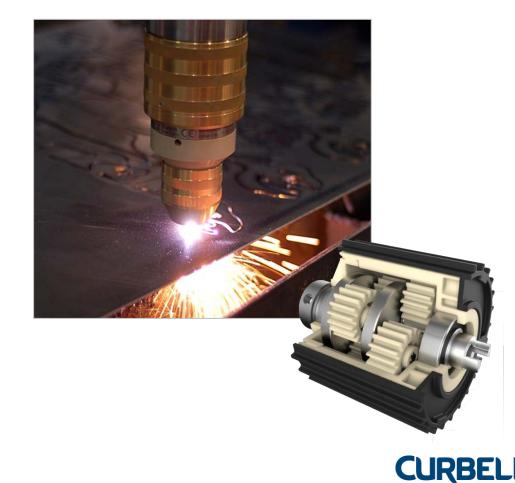
PPS CMP Retaining Ring


© Ensinger GmbH


PEEK Insulating Connector Component

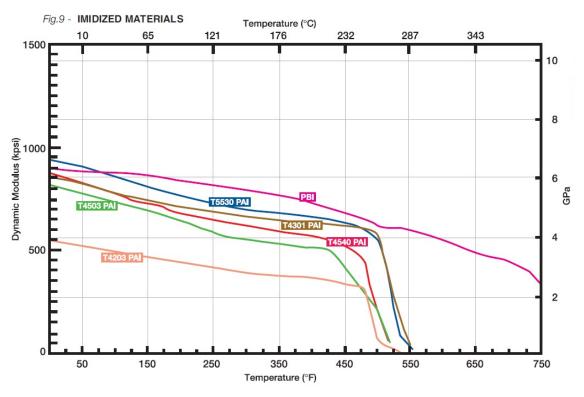
Other PAEK


Tensile Creep of PEEK 450G, HT and ST at 73°F



PEEK/PBI Blends (Celazole® T-Series)

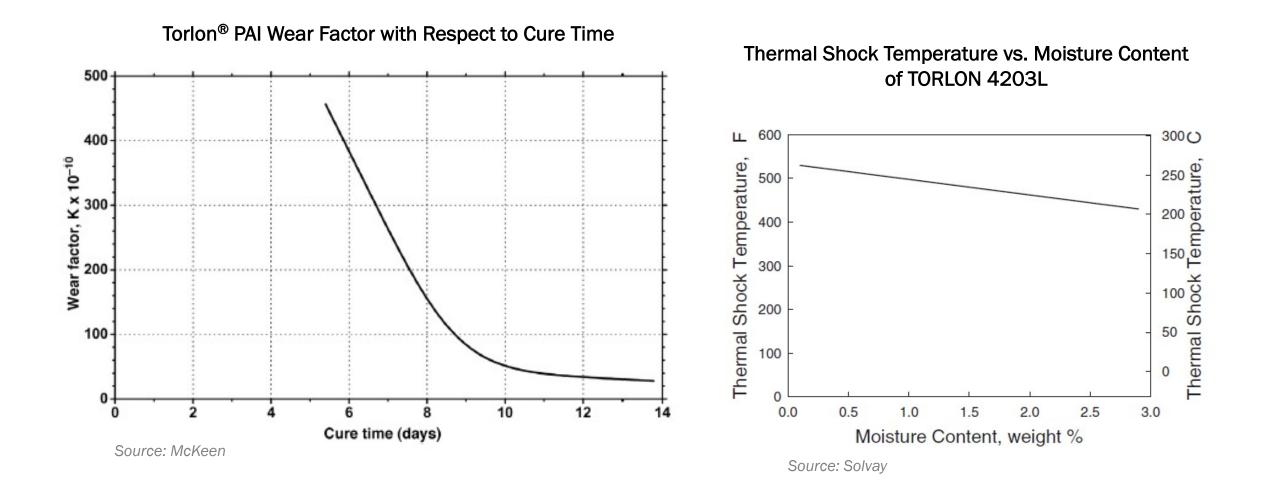
DMA Curves of Various T-Series PEEK/PBI Blends



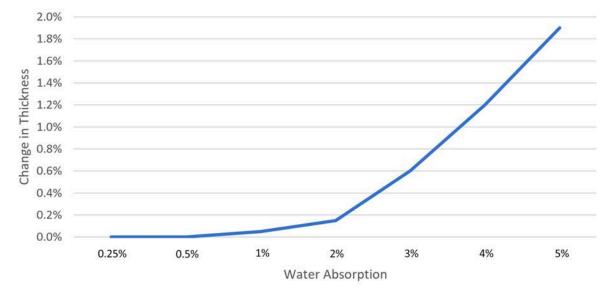
Source: McKeen

Torlon[®] PAI and Celazole[®] PBI

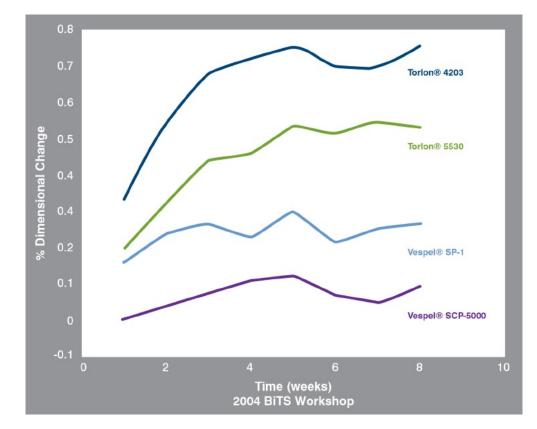
	Torlon [®] 4203	Celazole [®] PBI U-60
Specific Gravity	1.41	1.30
Tensile Strength	20,000 psi	23,000 psi
Elongation at Break	7.6%	3.0%
Flex Modulus	600,000 psi	950,000 psi
Compressive Strength	24,000 psi	50,000 psi
IZOD Impact (Notched)	2.0 ft-lb/in	0.5 ft-lb/in
Coefficient of Thermal Expansion	1.7 x 10 ⁻⁵ in/in/°F	1.4 x 10 ⁻⁵ in/in/°F
Glass Transition Temperature	527°F/275°C	800°F/427°C


DMA Curves for Torlon[®] PAI and PBI Materials

Source: Quadrant



Torlon[®] PAI Other Considerations


PBI and Torlon[®] PAI Dimensional Change Due to Moisture

Dimensional Change of PBI U-60 Disk in Water

Source: PBI Performance

Dimensional Change Due to Moisture Uptake of Torlon[®] PAI and DuPont[™] Vespel[®]

Source: Kane and Bloom

DuPont[™] Vespel[®] SP and SCP Materials

DuPont[™] Vespel[®] Polyimide Shapes

SP-1 SP-3 SP-21 SP-211 SP-22 SCP-5000 SCP-5009 SCP-50094 SCP-5050

Vespel® SP-1

For physical and electrical properties

SP-1 has high purity and provides physical strength, elongation and toughness, along with electrical and thermal insulation properties. Semiconductor manufacturers often find components fabricated from Vespel® SP-1 shapes useful in production processes.

Vespel® SP-21

For balanced low wear and physical properties

SP-21 is ideal for low wear and friction in applications. SP-21 has physical strength, elongation, and toughness.

Vespel® SP-22

For low wear and dimensional stability

SP-22 provides enhanced resistance to wear and friction as well as improved dimensional and oxidative stability.

Vespel® SP-211

For low coefficient of friction and unlubricated wear

SP-211 provides the lowest coefficient of friction over a wide range of operating conditions. It offers excellent wear resistance up to 300°F (149°C).

Vespel® SP-3

For unlubricated sealing and low wear in vacuum or dry environments

SP-3 provides lubrication for seals and bearings in vacuum or dry environments. SP-3 provides maximum wear and friction resistance in vacuum and other moisture-free environments, where graphite becomes abrasive.

Vespel® SCP-5000

For strength, hardness, and chemical resistance over a broad temperature range

SCP-5000 is ideal for demanding applications that require toughness, thermal and dimensional stability, chemical resistance, and stable dielectric performance across a broad temperature range.

Vespel® SCP-5009

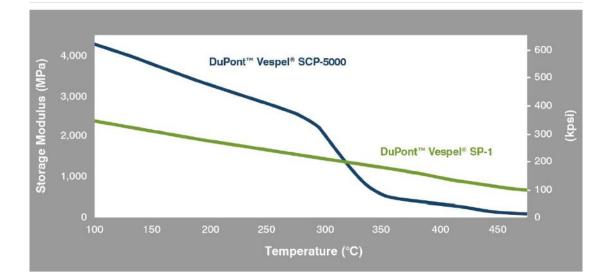
For high wear and friction applications under high operating pressure and elevated temperature environments

SCP-5009 shapes have a low coefficient of thermal expansion and provide good sealing as well as outstanding mechanical properties like high compressive strength and low creep, even in extreme conditions.

Vespel® SCP-5050

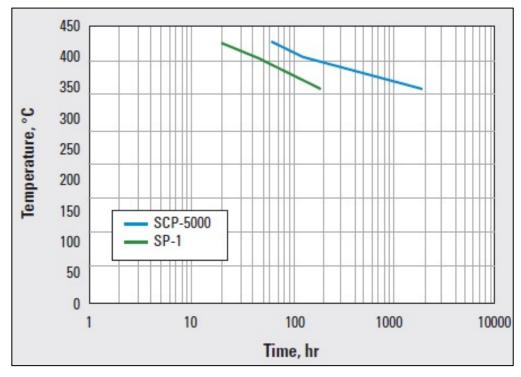
For high temperature, wear resistance, and exceptional coefficient of thermal expansion

SCP-5050 is a new and innovative polyimide composition. SCP-5050 has improved high temperature and wear resistance compared to conventional polyimides allowing replacement of metal and graphite in more applications. Its proprietary composition is designed to offer a coefficient of thermal expansion (CTE) close to the CTE of metals.


Vespel® SCP-50094

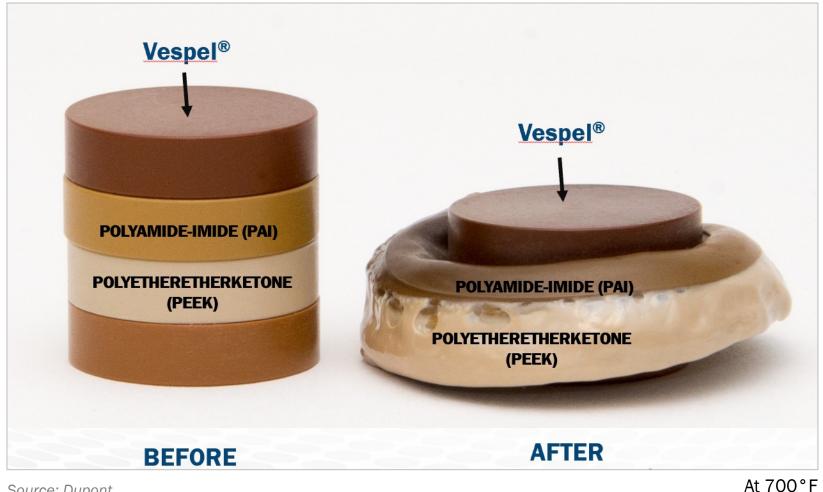
For high temperature and wear resistance

SCP-50094 is a proprietary polymer designed for demanding applications that require high strength, high temperature, and wear resistance.



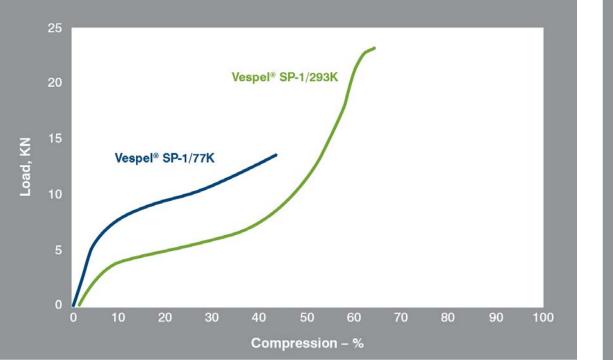
DuPont[™] Vespel[®] SP and SCP Thermal Data

DMA Curves for Unfilled DuPont[™] Vespel[®]

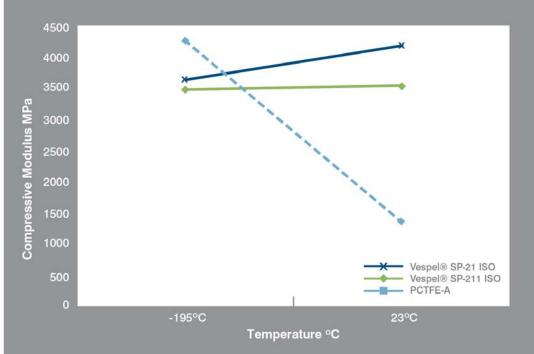

Approximate Time to 50% Reduction in Tensile Strength with Respect to Temperature

Source: DuPont

DuPont[™] Vespel[®] SP and SCP Thermal Data



CURBE


Source: Dupont

DuPont[™] Vespel[®] Cold Temperature Performance

Low Temperature Compressive Strength of Vespel[®] SP-1

Low Temperature Compressive Modulus of DuPont[™] Vespel[®] and PCTFE

Source: McDonald and Rao

Source: Lewis

PV	Torlon 4435	Torlon 4275	Vespel SP-21	PEEK 450FC30	Celaz TL-60 Mach'd	Celaz TL-60 Inj'n	Torlon 4203L
50000	88	89	31	melted	20	24	
75000	70	76	39		17	23	
100000	46	194*	22		13	20	
125000	melted		43		test end; no failure	15	
150000			38			27	
175000			27			40^	
200000			26				
225000			24				
250000			22				
275000			20				
300000			17				
325000			20				
350000			23				
375000			28				
400000			29				

Wear Factor K at 800 fpm (in³-min/ft-lb-hr x 10⁻¹⁰)

Source: Gruender

Torlon[®] PAI, PBI, & DuPont[™] Vespel[®] Application Examples

DuPont[™] Vespel[®] Spline Coupling

Labyrinth Seal

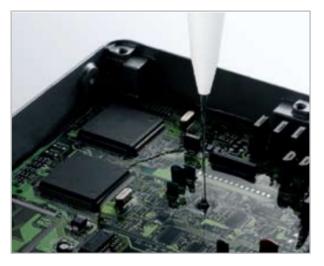
DuPont[™] Vespel[®] Locking Fastener

Authentic Certifications for DuPont[™] Vespel[®]

The plackat services on two in interferences in the dring out in the minimum plackaset grin is postational using your our at using a during that accurate association Product and/or product certification collation collationed from an usual/control sources (associate). During the major is not warrant or association association with the use of product and/or product certification collation collationed from an usual/control accurate, data is a set of the collation collation collation of the minimum place of the collation collation collation of the set of the collation collation of the collation collation collation of the collation collation of the coll and accurate collation of the collation of the set of the collation of the collation of the set of the collation of the collation

DuPont Engineering Polymers. Newark, Delaware. The DuPont Oval logo, DuPont™, and Vespel[®], are trademarks or registered trademarks of DuPont or its affiliates. Made in U.S.A.

123456



Silicones for Critical-Service Electronics

- High thermal conductivity and electrical insulation
- Continuous use range from -175°F to 500°F
- Low outgassing grades for spacecraft applications
- Outstanding adhesion to a variety of substrates
- Low modulus to accommodate thermal expansion mismatch
- Elastomeric behavior to prevent damage from vibration and fatigue
- Grades available with low dielectric constant and low dielectric loss for antenna applications
- Optically transparent grades available

References

- Osswald, Tim A., et al. Plastics Handbook. 5th ed., Carl Hanser Verlag GmbH Co KG, 2019, p. 22.
- Ebnesajjad, Sina. Fluoroplastics, Volume 1. 2nd ed., Elsevier, 2014, p. 10, 410.
- Tanaka, Kyuichiro. "Effects of Various Fillers on the Friction and Wear of PTFE-Based Composites." Friction and Wear of Polymer Composites, Elsevier, 1996.
- McKeen, Laurence W. The Effect of UV Light and Weather on Plastics and Elastomers.
- Radel® PPSU, Veradel® PESU & Acudel® modified PPSU Design Guide. Solvay Specialty Polymres, 2014, p. 25.
- "CTE, Thermal Expansion." Anderson Materials Evaluation, Inc., Anderson Materials Evaluation, Inc., https://www.andersonmaterials.com/cte-thermal-expansion/
- McKeen, Laurence W. The Effect of Sterilization on Plastics and Elastomers. 4th ed., William Andrew, 2018, p. 293.
- McKeen, Laurence W. The Effect of Temperature and Other Factors on Plastics and Elastomers. 3rd ed., William Andrew Pub, 2014, p. 229, 471, 490.
- Designing with Fortron® Polyphenylene Sulfide Design Manual. Celanese, 2013, pp. 2-2, 3-3, 3-5.
- Materials Property Guide. Victrex, p. 2, 3, 13.
- Victrex[®] High Performance PEEK Polymers Materials Property Guide. Victrex, p. 13.
- Heiland, Kirstin, et al. "Measurement of Radical Yields To Assess Radiation Resistance in Engineering Thermoplastics." Polymer Durability, American Chemical Society, 1996.
- Harrass, M., et al. "Tribological behavior of selected engineering polymers under rolling contact." Tribology International, Elsevier Ltd., Oct. 2009.
- Quadrant High Performance Products and Applications Guide. The Quadrant Group, 2017, p. 10.
- McKeen, Laurence W. Fatigue and Tribological Properties of Plastics and Elastomers. 2nd ed., William Andrew, 2016, p. 188.
- Torlon[®] polyamide-imide design guide. 2.1, Solvay Advanced Polymers, LLC, 2003, p. 23.
- Celazole ® PBI U-60 Moisture Management Guide. PBI Performance Products, Inc., 2012, p. 3.
- Kane, Paul, and Joy Bloom. Dimensional Stability and High Frequency Properties of Polymeric Materials for Machined Test Sockets. BiTs Workshop, 2004, p.7.
- Dupont[™] Vespel[®] Parts & Shapes SCP-5000 Technical Bulletin. Dupont, 2006, p. 3.
- McDonald, P.C., and M.G. Rao. Thermal and Mechanical Properties of Vespel at Low Temperatures. Institute of Cryogenics, p. 5.
- Lewis, Geoff, et al. High performance polyimide parts can help reduce actuation torque and improve sealing in cryogenic ball vales for LNG (Liquid Natural Gas) applications. Dupont, 2015, p.10.
- Gruender, Michael. High-PV Wear Study of Six High Performance Wear Grade Engineering Plastics. PBI Performance Products, Inc., 2012, p.4.

Thank you for your time today! Questions?

Dave Seiler

Senior Plastics Product Specialist – High Performance Polymers Curbell Plastics, Inc. Cell Phone: 610-316-9370 dseiler@curbellplastics.com

Ask a Plastics Expert form on curbellplastics.com for help with your applications

©2021 Curbell Plastics, Inc. Unauthorized use is strictly prohibited. All other trademarks, service marks and logos used herein are property of their respective owners. All rights hereto are retained by Curbell Plastics and any third party owners of such rights. All statements, technical information and recommendations contained in this publication are for informational purposes only. Curbell Plastics, Inc. does not guarantee the accuracy or completeness of any information contained herein and it is the customer's responsibility to conduct its own review and make its own determination regarding the suitability of specific products for any given application.

