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Plastic Materials 

• Overview of the Plastic Materials 

used in Valves and Regulators 



CTQs for the Plastics used in 

Valves and Regulators 



Moderate Compressive Modulus to Conform to 
Mating Surfaces 

• PTFE: 70 kpsi 

• Nylon: 420 kpsi 

• Glass Filled PEEK: 700 kpsi 

• Stainless Steel: 30,000 kpsi 

• Not easy to conform to mating surface 

• Cold welding, galling, wear, contamination 

 



Moderate compressive modulus to conform to mating 
surfaces (throughout the operating temperature range) 



Compressive Modulus 

Source: Geoff Lewis, DuPont 2015 – LNG Seals 

Compressive Modulus (ASTM D695) 



Compatibility with Process Fluids 

• Can’t degrade the 

polymer 

• Can’t contaminate the 

process fluid 

 



Chemical Resistance and ESC (Environmental Stress Cracking) 



Chemical Resistance Data 

Source: PDL, 1994 



Dimensional Stability 
Swelling / Softening Due to Water Absorption 

Source: Paul Kane, DuPont, 2004 – Semiconductor Test Sockets 



Dimensional Stability 
Swelling / Softening Due to Water Absorption 

Source: DuPont™ Zytel® Minlon Design Guide – Module II 

Stress-Strain Curves for Nylon 6/6 Dry-as-Molded 

and at 50% Relative Humidity 



Thermal Expansion 

CTE Mismatch 



Thermal Expansion 
(as close as possible to the mating metal surfaces) 

Coefficient of Thermal Expansion (CTE) of Various Materials 



Thermal Expansion of PTFE 

Source: Richard Kirby, 1956  



Thermal Expansion of PTFE and DuPont™ Vespel® SP-1 

Thermal Expansion of PTFE and DuPont™ Vespel® SP-1 Polyimide 

Source: Kirby, DuPont, McDonald and Rao 



Permeation Resistance of Various Fluoropolymers 

Source: Arkema Kynar® PVDF Permeation Brochure 



Purity 

• Low leaching 

• Low outgassing 

• Low particulate 

contamination 

• Agency Compliance 

(FDA, USP Class VI, etc.) 



Purity 

Source: Bennan, 2002 



Resistance to Stress Relaxation 



Resistance to Stress Relaxation 



Stress Relaxation 

Stress Relaxation of DuPont™ Vespel® SP-1 at 68º F 
Pressure vs. Time at 15% Constant Compression 

Source: McDonald and Rao, 1987 



Correct Coefficient of Friction to Achieve the 
Desired Actuation Torque (without lubrication) 

• Low friction without external 

lubrication 

• Low wear rate 

• Low wear on mating metal parts 

 



Friction and Wear Additives to Control Actuation Torque 

• “Wear” is a complex behavior.  It is a 

system property, not a material 

property. 

• The COF of base polymers varies  

considerably 

• Additives can reduce COF, improve 

wear, and increase limiting PV 

• Mating metal surface is very important 

• Chemistry 

• Hardness 

• Surface roughness 



Environmental Factors that Affect  
Friction and Wear Additives 

• Temperature 
(cryogenic to elevated 
temperatures) 

• Water / humidity 

• Vacuum 



Friction and Wear Additives 

• MoS2 -  
makes nylon harder and more crystalline. 

• PTFE -  
creates a wear film on the mating metal surface. 

• Oil -  
separates sliding surfaces with a liquid film. 

• Graphite -  
molecules slide over each other in humid 
environments. Is not good for dry or vacuum 
environments. 

• Carbon fibers -   
lowers friction and increases thermal conductivity. 



Effect of PTFE Additives on Sliding Wear 
Against Hardened Steel 

Material:
Specific Wear Rate

(x10-15m3N-1m-1)

Coefficient of 

Friction

Nylon 6/6 15.9 0.57

Nylon 6/6 with 15% PTFE 0.6 0.14

Acetal 2.1 0.45

Acetal with 15% PTFE 0.4 0.22

Source: J. Mens, 1991 



Deposition of a Polymer Film 
on the Mating Metal Surface 

Source: 

Wieleba, 2007 



Sliding Wear of HDPE and UHMW-PE 
Against Stainless Steel, Mild Steel, and Aluminum 

Source: Belal Yousif, 2010 

Note the importance of counterface metal and the molecular weight of the polymer. 



Oxygen Compatibility/Flammability 

Source: Schoenman, 1989 

Source: Bozet, 2011 

Final Report Oxygen Materials  

Compatibility Testing 

Liquid Oxygen Compatibility of Materials  

for Space Propulsion Needs 



 Vacuum Compatibility 

Source: Adapted from Murari and Barzon 

Note: Vacuum also affects friction and wear performance. 



Operating Temperature 

• Change in modulus 

• Change in elongation 

• Creep behavior 

• Thermal expansion 

• Degradation 

 



Modulus Changes as a Function of Temperature 

Source: Adapted from Parvaiz, 2010 and Kane, 2004. 

Flexural Stiffness by Dynamic Mechanical Analysis 
DuPont™ Vespel® SP-1, PEEK, PAI 



Thermal Degradation 



Thermal Degradation 

Source: Hechtel, 2014 

Time to 50% Loss of Tensile Strength for a Thermoplastic at  
Various Temperatures 



Cold Temperatures 

• Thermal conductivity 
Low thermal conductivity sometimes  
required – insulators, cryogenic fixtures 

• Hardness, strength and  
modulus increase  
Conformability is important for seals 

• CTE mismatch between  
polymer and mating metal part 

• Loss of elongation/toughness 

• Decreased coefficient of friction 



Assuring Consistent Quality of 

Plastic Materials 



Significance of Molecular Weight 

• Improves impact resistance 

• Lowers brittleness temperature 

• Increases melt viscosity  

• Ketchup                Tomato Paste 

• Limits processability at both the  
upper and lower end of the range 

• Improves long-term performance 

• Fatigue (also affected by surface finish and 
microheterogeneity) 

• ESCR (environmental stress crack resistance) 

• Chemical resistance 

• Wear performance 



Significance of Molecular Weight 

• Some degradation through normal processing 

• UV light or other radiation 

• Chemical attack  

• Hydrolytic degradation 

• Exposure to steam 

• Improper drying of resin 

• Thermal degradation 

• Excessive temperature during processing 

• Multiple heat histories, use of regrind 

• Long-term exposure to elevated temperatures 

• Use of incompatible colorants 

 



Effect of Regrind 

Degradation of Polycarbonate from Multiple Heat Processing Cycles 
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Number of Heat Processing Cycles 

Source: Adapted from Feller, 2003 



Effect of Crystallinity 

Crystallinity of PCTFE 

Source: Schram, 1973 



Plastic Materials for  

Valves and Regulators  



PVC 

• Advantages 

• Inexpensive 

• Easy to weld via thermoplastic  

welding and easy to bond with  

solvent cements 

• Moderately strong and stiff 

 

• Limitations 

• Limited resistance to aggressive 

chemicals 

• Somewhat brittle 

• Not suitable for elevated temperature applications 



High Density Polyethylene (HDPE)  

• Advantages 

• Inexpensive 

• Outstanding chemical  

resistance 

• Easy to weld via thermoplastic 

welding 

 

• Limitations 

• Relatively low strength and stiffness 

• High CTE makes it difficult to hold tight tolerances 

• Not suitable for elevated temperature applications 

• Very difficult to bond with adhesives or solvent cements 

 

• Properties vary based on density and molecular weight 

 



Polypropylene 

• Advantages 

• Inexpensive 

• Outstanding chemical resistance 

• Easy to weld via thermoplastic welding 

• Slightly stronger and stiffer than HDPE 

• Slightly higher operating temperature  

than HDPE 

 

• Limitations 

• Relatively low strength and stiffness 

• Less ductile than HDPE 

• Not suitable for elevated temperature applications 

• Very difficult to bond with adhesives or solvent cements 

 



Acetal (including Delrin®) 

• Advantages 

• Easy to machine 

• Stronger and stiffer than  

polyethylene or polypropylene 

• Excellent friction and wear 

characteristics 

• PTFE filled grades available 

 

• Limitations 

• Moderately high CTE makes it 

challenging to hold tight tolerances 



Nylon 

• Advantages 

• Can be cast into large sheets, rods, 

tubes, and near net shapes 

• Available in many different colors  

and grades 

• Good friction and wear characteristics 

• Stronger than polyethylene, PP, or 

acetal 

 

• Limitations 

• High water absorption makes it 

challenging to hold tight tolerances 

• Becomes softer when it absorbs 

moisture 



Fluoropolymers 

• Good chemical resistance 

• High purity 

• Some have great stain resistance 

• Stable at elevated temperatures 

• Unfilled PTFE has poor creep 

characteristics and high CTE. Can use 

fillers to improve these characteristics. 

• Unfilled PTFE can have porosity issues 

(Note: TFM has low porosity) 

• Melt processable fluoropolymers vary 

based on mechanical properties, service 

temperature, electrical properties, 

permeability, and cost. 



Fluoropolymers 

Source: Teng, 2012 



Fluorosint® 

• Family of filled PTFE materials manufactured by Mitsubishi 
Chemical Advanced Materials 

• Stronger and stiffer than PTFE 

• Better dimensional 
stability and creep 
resistance than PTFE 

• FDA compliant grades 
available 

Source: Mitsubishi Chemicals Advanced Materials. 

Fluorosint® PTFE Family of Advanced Fluoropolymer Materials 



PEEK 

• Good mechanical properties 

throughout a broad temperature 

range 

• Good chemical resistance including 

resistance to steam 

• High purity 

• FDA compliant grades available 

• Stain resistant 

• Dimensional stability 

• Glass filled and friction and wear 

grades available 

• Relatively expensive 



Spin Molded PEEK Manufactured by Ensinger 

• Better Yields 

• Lower Stress (especially important for glass filled grades) 

• Higher Elongation 

 

Compression Molded Tube Spin Molded Tube 



Torlon® PAI 

• Advantages 

• Very high strength and 

stiffness 

• Higher operating temperature 

than PEEK 

• Filled grades available 

• Limitations 

• Expands in humid conditions 

• Very expensive 

• Limited resistance to steam 



DuPont™ Vespel® Polyimide 

• Advantages 

• Good mechanical properties 

throughout a broad temperature range  

• Higher operating temperature than 

PEEK or Torlon® 

• Dimensional stability - CTE, creep, 

stress relaxation 

• Outstanding friction and  

wear properties (certain grades) 

• Limitations 

• Very expensive 

• Limited resistance to steam 

• Very important to have authentic material 



Low Temperature Performance of DuPont™ Vespel® Polyimide 

Source: McDonald and Rao (1987) 

Compressive Stress and Compressive Strain  
of Vespel® SP-1 at 77K and 293K 

Test specimen 6 mm diameter x 6 mm long 



High Temperature Performance of DuPont™ Vespel® Polyimide 



Case Study - Thermal Stability of DuPont™ Vespel® Polyimide 

Source: Wingard, 2013 



Thank you for your time today! Questions? 

• Ask a Plastics Expert form for help with your 

application at CurbellPlastics.com  

• Ask about Customized Presentations 

Dr. Keith Hechtel 
Sr. Director of Business Development 

Curbell Plastics, Inc. 

Toll Free Phone: 888-287-2355   

Direct Line: 716-740-9142 

khechtel@curbellplastics.com 

mailto:khechtel@curbellplastics.com
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