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Company History
Strong History of Growth, Stability, and Values

Established in Buffalo, NY in 1942 Today - 21 Locations Nationwide



Full Line of Performance Plastics

Sheet Rod & Tube Fabricated Parts

Adhesives & Sealants Prototyping & Tooling
Materials

Tubing & Hose

Films

Tapes, Fabrics & Belts



CTQs for Polymers in Spacecraft Applications



CTQs for Polymers in Spacecraft Applications 

• The ability to operate reliably in a space environment with a 
temperature range of -150 °C to 130 degrees °C

• The ability to operate at elevated temperatures when used in 
rocket engine applications

• Dimensional stability including a low and consistent rate of 
thermal expansion and contraction

• Ductility and moderate modulus at cryogenic temperatures

• Low thermal conductivity for thermal insulators.

• High thermal conductivity to manage heat in electronics.

Thermal Properties



CTQs for Polymers in Spacecraft Applications 

• Sufficient mechanical strength and durability to 
withstand the stresses associated with launch

• Vibration damping characteristics for sensitive 
optics and electronics

• Good sealing characteristics

• Moderate modulus

• Low friction and moderate modulus for consistent 
actuation torque when used in spacecraft valves

• Compressive creep resistance

• Stress relaxation resistance

Mechanical Properties



CTQs for Polymers in Spacecraft Applications 

• Low friction against a wide variety of metal counterface materials

• Long wear life

• Low wear on mating metal parts

• Low particulate generation

• Excellent friction and wear properties at 
elevated temperatures

• Excellent friction and wear properties at 
cryogenic temperatures

• Excellent friction and wear properties in vacuum conditions

Tribological Properties (Friction and Wear)



CTQs for Polymers in Spacecraft Applications 

• Resistance to solvents, propellants, and other corrosive 
chemicals

• Low outgassing in vacuum

• Resistance to radiation from sources both internal and external 
to the spacecraft

• Resistance to erosion from atomic oxygen

• Excellent flammability characteristics including compatibility 
with LOX (liquid oxygen), GOX (gaseous oxygen), and hydrogen.

• Low dielectric constant and low dissipation factor throughout a 
broad range of temperatures and frequencies when used for 
spacecraft antenna radomes

• High dielectric strength when used as an insulator

Chemical, Environmental, and Electrical Properties



CTQs for Polymers in Spacecraft Applications 

A history of successful use for 
spaceflight applications
contributing to a high Technology 
Readiness Level

Source: Wood



Thermal Properties



Operating Temperature Range

Mechanisms need to function throughout their operating 
temperature range



Operating Temperature

• Change in modulus

• Change in elongation / ductility

• Creep / stress relaxation behavior

• Thermal expansion and contraction

• Degradation



Operating Temperatures

Note:  Strain rate mimics temperatureSource: Schram, 1973



Flexural Modulus and Temperature

Source: Hechtel, 2014



Storage Modulus and Temperature – DuPont™ Vespel®

Source: Wingard, 2013 



High Temperature Capability

Source: DuPont

50 170



High Temperature Capability

Source: Wingard, 2013



Low Temperature Ductility of 30% Glass Filled PEEK

Source: Chu



Low Temperature Ductility of DuPont™ Vespel®

McDonald, P. & Rao, M. (1987). Thermal and mechanical properties of Vespel® at low temperatures. 
Proceedings from the International Cryogenic Materials Conference, Saint Charles, IL, 14-18 June, 1987.



Moderate Modulus of DuPont™ Vespel® at Cryogenic Temps

Lewis, G., Merot, P., & Matoux, J. (2015). High performance polyimide parts can help reduce actuation torque 
and improve sealing in cryogenics ball valves for LNG (Liquid Natural Gas) applications. Presented at the AMI 
International Conference on Oil & Gas Non-Metallics. London. December 8-10, 2015.



Ductility of PCTFE – Varies Depending on Processing

Processing (extrusion, 
compression molding, 
etc.) is very important
• Residual stress
• Molecular weight
• Crystallinity

Source: Schram, 1973



Combined Effect of Moderate Modulus and Low Friction
on Torque to Actuate a Valve at Cryogenic Temperatures

Lewis, G., Merot, P., & Matoux, J. (2015). High performance polyimide parts can help reduce actuation torque and 
improve sealing in cryogenics ball valves for LNG (Liquid Natural Gas) applications. Presented at the AMI International 
Conference on Oil & Gas Non Metallics. London. December 8-10, 2015.



CTE of PTFE

Source: Kirby



Low and Consistent CTE of DuPont™ Vespel® Polyimide

Source: Lewis

Thermal 
expansion of 
Dupont™

Vespel® SP-21



Low Thermal Conductivity at Cryogenic Temperatures

Source: Woodcraft



High Performance Silicones for Spacecraft Electronics

• High thermal conductivity, while retaining electrically 
insulative properties, to prevent excessive heat buildup in 
high power density devices

• Low outgassing grades for spacecraft applications 
• Wide operating temperature range, from -175 °F to 500 °F 

continuous use
• Outstanding adhesion to a variety of substrates
• Low modulus to address thermal expansion mismatch 

without damaging electronic components
• Elastomeric behavior to prevent damage from vibration 

and fatigue
• Grades available with low dielectric constant and low 

dielectric loss for antenna applications
• Optically transparent grades available



Mechanical Properties



Creep

Source: Hechtel, 2014



Stress Relaxation

Source: DuPont

Tensile stress relaxation curves for PTFE held at constant strain



Creep and Stress Relaxation of DuPont™ Vespel® Polyimide

Source: McDonald, 1987

Creep Stress Relaxation



Vibration Damping Characteristics

Source: Chartoff, 1983



Case Study – Centering Rings for Space Camera

Source: Ford



Tribological Properties (Friction and Wear)



Friction and Wear

• “Wear” is a complex behavior  
• A system property, not a material property

• The COF of base polymers varies 
considerably

• Additives can reduce COF, improve wear, 
and increase limiting PV

• Vacuum changes wear characteristics
• Mating metal surface is very important

• Chemistry

• Hardness

• Surface roughness



Mechanisms of Wear

Sliding Wear Rolling Contact Fatigue

Impact Fatigue Abrasive Wear



Friction and Wear

Source: Jett



Friction and Wear of Various Polymers Against 304 Stainless Steel 
at Room Temperature and at Cryogenic Temperatures

Source: Michael



Friction and Wear Performance in Vacuum (Vespel® SP-3)

Source: Poncet

TESTS OF CERTAIN BEARING MATERIALS 
IN HIGH VACUUM BY CERN
Geneva and IRCHA - Paris

The best polyimide material tested 
Both in air and vacuum appeared to be 
Vespel SP31 (old name for Vespel SP-3) 
polyimide MoS2 mixture.



Case Study – Rollers for a Planetary Atmosphere Occultation Spectrometer

Source: Heverly, 2004

Conclusions



DAVE SEILER



Vacuum Conditions

Source:  Murari and Barzon

Notes:  - Vacuum also affects friction and wear performance
- NASA Low Outgassing Database



Low Outgassing

Source: Fisher



Radiation Resistance (from sources internal and external to spacecraft)

Source: Shulman, 1970



Resistance to Erosion from Atomic Oxygen

Source: Banks, 2009

Polymer Erosion and Contamination Experiment 



Flammability/Oxygen Compatibility

Prepared by 
Leonard Schoenman
January 1989

Source: Schoenman, 1989



Oxygen Compatibility/Flammability

“Impact tests clearly state that polyimide Vespel SP-21 is compatible in liquid oxygen. 
The conclusion is the same for PTFE. As for PTFCE,…the conclusion…is less 
straightforward.”

• SP-21 has been tested by the National Aeronautics 
and Space Administration and meets MSFCSPEC-
106B, “Testing Compatibility of Materials for Liquid 
Oxygen Systems”. At present time this approval is on 
a selected-lot basis.

• Similarly, SP-21 was tested by the Naval Air 
Engineering Center, Department of the Navy, and was 
found compatible according to MIL-V-5027C, “Non-
Metallic Materials Compatible with Oxygen”. Source: Bozet, 2011



Hydrogen Compatibility

Source: Kelley, 1978



Chemical Resistance and ESC

Source: PDL Staff, 1994

Note:  The academic literature has articles on resistance to rocket propellants, solvents, lubricants, etc.



DuPont™ Vespel® Polyimide 
Properties and Spacecraft Applications



DuPont™ Vespel® Polyimide Shapes



DMA Data – DuPont™ Vespel® and PAI
Storage Modulus by Dynamic Mechanical Analysis - DuPont™ Vespel® SP-1 and SCP-5000, and PAI

Source: Adapted from Kane



Compressive Strength at Temperature

Source: Dupont

DuPont™ Vespel® Polyimide, PAI, and PEEK

BEFORE AFTER
Compressive Load, 700 oF

Vespel®

Vespel®

POLYAMIDE-IMIDE (PAI)

POLYETHERETHERKETONE
(PEEK)

POLYAMIDE-IMIDE (PAI)

POLYETHERETHERKETONE
(PEEK)



Case Study – Spline Couplings for Military Vehicles

Source: Heise, 1983



Case Study – Valve on Mars Rover

Source: Smith, 2008

Flight Microwaves Welded into a Flight Manifold



Case Study – Poppet and Seat Materials

Source: Baez



Case Study – Spacecraft Valve

Source: Gibbon



Case Study – Locking Fasteners

Source: Wood, 1984

Conclusions
This test program has demonstrated the acceptability of a fully reusable self-locking fastener system, 
employing Vespel® (SP-1 polyimide) elements in lieu of crimped nuts, for SRB application. The torque 
tests performed on fasteners installed with three different configurations of Vespel®
self-locking element confirm that Vespel ® has properties which can be used in threaded fasteners at 
temperatures to 450°F.



Identification and Certifications  
of Authentic DuPont™ Vespel® Polyimide
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Thank you for your time today! Questions?

Ask a Plastics Expert form on curbellplastics.com for help with your applications

Dave Seiler
Sr. Product Specialist – High Performance Polymers
Curbell Plastics, Inc. 
office: 716-667-3377 Ext. 7676 | mobile: 610-316-9370 
dseiler@curbellplastics.com

Dr. Keith Hechtel, DBA 
Senior Director of Business Development 
Curbell Plastics, Inc. 
office: 716-740-9142 | mobile: 563-271-9316
khechtel@curbellplastics.com
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